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ABSTRACT

75 years of channel and floodplain modification has greatly altered the middle Rio
Grande fluvial system. Dams, levees, and various generations of bank stabilization
projects have confined the river to a narrow valley and greatly altered discharge and
sediment supply regimes as population centers have grown along its path. The Rio
Grande drains more that 273,530 km? of the southwestern United States and northern
Mexico, with 37,555 km? of the basin directly contributing to the flow of the river
through the study reach, near Albuguerque, New Mexico. This study specifically
investigates the effects Cochiti Dam has had on the Rio Grande over the past 30 years.

Prior to Cochiti Dam, bed sediment was comprised of sand and/or gravel
depending on discharge. It’s estimated that ~80% of sediment inflow to the middle Rio
Grande is trapped by three major dams, with Cochiti alone receiving ~2.2x10% m® of
sediment a year. A 31-year pre-dam record and a 23-year post-dam record of discharge

data show that peak discharges below Cochiti have remained similar, the primary
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difference being the lack of large flood flows greater than 283 m*/s. Directly after
closure of Cochiti Dam in 1973, the study reach experienced a coarsening of bed
sediments from fine sand to medium sand. This coarsening occurred prior to the
development of a transition zone, between coarse and fine-grained sediments, which has
migrated downstream into the study area. Through the use of geomorphic and geologic
techniques this study characterizes the effects Cochiti dam has had on a 25.5 km study
reach of the middle Rio Grande. It specifically addresses Cochiti dam induced
downstream changes in channel morphology and the development of a bed-load sediment

grain size transition zone.
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INTRODUCTION

To better understand the long-term effects of dam operations and other
anthropogenic and natural influences on the middle Rio Grande, the Bureau of
Reclamation has provided funding for a geomorphic study of a 25.5 km reach from the
US 550 bridge in Bernalillo to the Montano Street bridge in north Albuquerque (Figure
1). Since the construction of Cochiti Dam, the middle Rio Grande downstream from the
dam site has undergone significant morphological changes (Lagasse, 1980). These
changes include stream channel degradation, narrowing and straightening of the channel,
and a coarsening of bed sediment within the active wetted perimeter of the channel. The
active channel is defined as the area between the abandoned floodplain surfaces that is
unvegetated and has a significant probability of inundation during the year. Although
some of these changes began to occur prior to dam construction as a result of specific
reclamation efforts, these channel changes became exacerbated after dam construction
was completed (Lagasse, 1980).

This study is part of a larger regional study of the Rio Grande currently being
conducted by the Bureau of Reclamation in conjunction with the University of New
Mexico in Albuquerque and Colorado State University in Fort Collins. This larger study
is focusing on the large-scale channel adjustments occurring along the entire length of the
middle Rio Grande south of Cochiti Dam. Richard (2001) was one of the first
contributors to this project. Her Ph.D. dissertation focused on modeling the channel

changes of the Rio Grande directly downstream of Cochiti Dam. Richard (2001)



concluded that based on the modeling of historic channel adjustments the Rio Grande, in

response to Cochiti Dam, is headed towards a more stable channel configuration.
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Figure 1 Mosaic of USGS air photos of the study reach. The reach extends from U.S. 550 Bridge in
Bernalillo in the north to Montano Bridge in the south. Length of reach is 25.5 river kilometers.
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meters.

Prior to dam construction, the middle Rio Grande channel contained many non-

vegetated bars and islands, with bed sediment within the study reach composed primarily

of fine and medium sands and lesser patches of gravel. It has been estimated that ~80%

of sediment inflow to the middle Rio Grande is trapped by Cochiti, Jemez, and Galisteo
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dams, with Cochiti alone receiving ~2.2 x 10° m® of sediment a year (Lagasse, 1994,
Baird and Sanchez, 1997). A 31-year pre-dam record and a 23-year post-dam record of
discharge data at the Central Bridge gauge in Albuquerque show that peak discharges
below Cochiti have not changed markedly, the primary difference being the lack of large

flood flows greater than 283 m®/s (10,000 ft*/s) (Figure 2).
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Figure 2 Plot of the annual peak discharges for the 58 year USGS gage record of the Rio Grande at
Albuquerque (gage ID: 08330000). Lines indicate the average discharge for the entire record, as well
as pre and post-Cochiti average discharges.

The highest discharges recorded at the Albuquerque gauge since the construction
of Cochiti Dam occurred in 1984 (9,500 ft%/s) and 1985 (9,370 ft*/s). According to
Harvey (2003), flows of this magnitude had a pre-dam recurrence interval of between 2

and 5 years (Figure 3). A longer pre-dam record indicates that peak discharges in the 31-
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Figure 3 Post-Cochiti flood-frequency curve for the Rio Grande at the Albuquerque gage (Fig. 3.13
from Harvey, 2003).
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Figure 4 Pre-dam peak discharge recorded for the Rio Grande from the middle 1860°s to the late
1960’s. Discharges are measured in cubic feet per second (10,000 ft¥/s = 283 m%/s) (from Kelley,
1982).
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year pre-dam period are relatively low compared to earlier discharge records dating back
to the late 1860s (Kelley, 1982), however, the original source and reliability of the
Kelley, 1982 data are unclear (Figure 4).

The channel bed began to degrade and become coarser and locally armored below
Cochiti Dam shortly after its closure (Lagasse, 1980; Williams and Wolman, 1984). The
armoring of the channel directly below the dam was facilitated by the presence of gravel
below a thin layer of sand (Culbertson and Dawdy, 1964). The presence of large
amounts of gravel within the upper reaches of the middle Rio Grande and scarcity of
gravels within the Albuquerque reaches of the middle Rio Grande was also observed and
recorded by Rittenhouse (1944), who stated that “in the upper part of the middle Rio
Grande channel deposits consist of fine to medium sands overlying a bed pavement of
cobbles and pebbles. Downstream the gravel becomes less abundant and below
Albuquerque, seldom constitutes more than a few percent of the upper 5 feet of the
deposits”. Nordin and Beverage (1965) further indicated that the Rio Grande became a
sand-dominated channel south of the confluence with the Jemez River, which was a large
source of sediment to the Rio Grande prior to being dammed (Figure 5). A transition
zone between the coarser bed of pebble and cobble gravels and a fine to medium sand
bed similar to pre-dam conditions migrated downstream at a rate of ~5 km/yr between
1973 and 1980, but this rate has slowed over the last 30 years, likely in part because of
sediment inputs from major tributaries downstream, including Galisteo Creek, Arroyo
Tonque, the Jemez River, and Arroyo de las Barrancas (Lagasse, 1981). It is not known

if the current transition zone that has developed is stable or still migrating downstream.



Figure 5 Oblique air photo showing the Jemez River flowing east-northeast to Jemez Canyon Dam
and the large accumulation of stored sediment trapped above the dam, visible when the reservoir
drained in 2003. Notice the narrow, incised channel of the Jemez River, indicating relatively minor
sediment removal from above the dam. Prior to dam construction on the Jemez the majority of the
sediment stored above the dam would have entered the mainstem Rio Grande, which flows from left

to right at the top of the photo.



The specific purpose of this study is to investigate and document the changes that
have occurred within the Bernalillo-Albuquerque study reach after completion of Cochiti
dam in 1973. A primary focus of this study is the transition zone between an upstream
reach altered by dam effects and a downstream reach that is relatively little affected.

Initial observations show that the transition zone is identified by changes in
channel planform morphology and median grain sizes of bed load material. Within the
study reach, channel planform changes from a narrower, dominantly single-threaded and
locally island-braided planform upstream, to a broader and shallower multi-threaded
island- and bar-braided planform downstream. Gravelly bed material is found upstream
of the transition zone, whereas a sandy bed characterizes the downstream reach. The bed
sediment transition zone is not a discrete boundary; it is characterized by a general
decrease in gravel within the channel and a decrease in channel depth downstream.

Previous studies (Nordin and Beverage, 1965; Culbertson and Dawdy, 1964;
Rittenhouse, 1944), however, have documented that bed material became finer with
distance downstream from Cochiti dam, even before its construction. Therefore, a
primary goal of this study is to describe channel morphologic and bed material changes in
the study reach following closure of the dam, and to separate downstream changes
resulting from dam operations from pre-existing conditions.

Other key elements of this study include changes in vegetated island areas, bank
and island sediment descriptions, general reach-wide channel morphologies, analysis of a
water surface profile and changes in hydraulic geometry parameters since completion of
Cochiti dam. Documenting the change in vegetated island areas along the study reach

highlights the changes in sediment storage and channel morphology along the reach; in



addition study of the bank and island stratigraphy will characterize what type of sediment
is being stored along the study reach. The water surface profile can be used to examine
slope changes that may stem from local sediment inputs, as well as any larger-scale slope
changes that could affect sediment storage and transport along the length of the study

reach.



STUDY QUESTIONS AND HYPOTHESES

The main questions posed in this study focus on the transition zone: (1) What
geomorphic and sedimentary features define the transition zone? Specifically, (2) how
do bed material grain size distributions change with distance downstream, and (3) how
does channel morphology change downstream? (4) What effect do bed sediment, bank
sediment and vegetated islands have on channel morphology? (5) What factors affect the
location of transition zone, and is the transition zone static, or is it currently moving
downstream?

Two hypotheses were proposed for this study. One is that relatively little change
in bed material has occurred, and that the difference in bed-sediment texture along the
study reach reflects mainly pre-dam downstream fining as distance from primary gravel
sources above the Jemez River confluence increases. A second hypothesis is that the
gravel bed found in the upstream reach is a lag composed of gravels already present
within floodplain sediments before channel incision; alternatively, the gravels may have
been transported downstream from incising reaches above. These hypotheses were tested
using contemporary and historical bed sediment grain size data, contemporary sand depth
measurements, and bank and island stratigraphy.

Classic theory suggests that movement of the transition zone downstream through
the reach will continue at a progressively slower rate until the system reaches quasi-
equilibrium (Williams and Wolman, 1984). Among major factors affecting transition
zone dynamics are discharges from Cochiti dam and local tributaries, as well as any

sediment released into the channel associated with these flows. The sediment-starved
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releases from Cochiti Dam are limited in magnitude and relatively consistent, but
tributary water and sediment discharges are much less predictable and dependent
primarily on the magnitude and intensity of localized storm events. Several large
tributaries in the study reach deliver sediment directly into the floodway of the Rio
Grande with only minor engineered structures affecting the flow. Tributary flows have
been shown to episodically introduce large amounts of sediments into the river (Leopold,
1946). Therefore, one hypothesis is that sediment inputs from tributaries will slow or halt
the downstream progress of the transition zone through the reach. Alternatively,
continued clear water releases throughout the year from Cochiti Dam will continue to
facilitate movement of the zone downstream. The scope of this project will not offer any
definitive tests of these hypotheses, but the knowledge gained may steer future

researchers towards a clearer understanding.
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REGIONAL SETTING AND HISTORY OF THE RIO GRANDE

The Rio Grande drains more that 273,530 km? of the southwestern United States
and Mexico, with 37,555 km? of the basin directly contributing to the flow of the river
through the study reach. The river flows from the San Juan Mountains of southern
Colorado to the Gulf of Mexico more than 3000 km away (Collier et al., 1996) (Figure
6). Through New Mexico, the Rio Grande flows through a series of continental rift
grabens partly filled with Cenozoic axial stream and piedmont deposits of the Santa Fe
Group (Bachman and Mehnert, 1978; Lambert, 1968; Dethier, 1999), and Cenozoic and
modern fluvial sediments (Connell, 1998). The Middle Rio Grande valley begins at the
southern end of White Rock Canyon, southwest of Santa Fe, and extends south for about
230 km to the San Marcial constriction (Lagasse, 1980; Baird and Sanchez, 1997).

Along the middle Rio Grande water withdrawals are primarily for irrigation,
although the city of Albuquerque is currently building a semi-permanent diversion dam
within the study reach in order to divert the city’s share of the San Juan-Chama River
Project water for non-agricultural uses. Without the use of Rio Grande water the
agricultural infrastructure of the middle Rio Grande corridor would effectively collapse.
Although the Rio Grande was influenced by human activities prior to Spanish
colonization, the most significant changes have occurred within the last 78 years.
Around 1925, various state and federal agencies began to constrain and channelize the
river through the use of various methods. The first of these methods were the
construction of diversion dams and flood control levees placed parallel to the river. The

diversion dams were built in order to facilitate the transfer of river water into the intricate
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Figure 6 The extent of the Rio Grande drainage basin (reed shading) in the southwestern United
States and northern Mexico. Insets highlight the location of the study reach within New Mexico and
outline the location of the study reach within the Albuquerque area. Images from the U.S.
Environmental Protection Agency (www.epa.gov) and the United States Geological Survey
(Www.usgs.gov).

system of irrigation canals, ditches and acequias, and to control the length of the
irrigation season. Unused irrigation water is returned to the Rio Grande through the use
of riverside drains, which run parallel to the floodway of the river. The levees, which
constrain the channel of the river to a narrow floodway, were originally a system of
locally unconnected and poorly engineered mounds built by local landowners to protect
their fields (Lagasse, 1994). With the formation of the Middle Rio Grande Conservancy
District, the multiple levee segments were combined and engineered with the remaining
piles of debris left over from construction of the riverside drains to protect the majority of
the middle valley from large-scale floods (Graf, 1994). Today the Middle Rio Grande

Conservancy District controls these levees and diversion dams (Lagasse, 1994).
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Dams with uses ranging from flood and sediment control to water storage have
been constructed within the middle Rio Grande valley since 1935 when the Middle Rio
Grande Conservancy District built EI Vado Dam on the Rio Chama (Harvey, 2003).
Between 1953 and 1973, the Corps of Engineers constructed one main stem dam at
Cochiti and 3 tributary dams: Abiquiu on the Chama River (~ 80 km above Cochiti),
Galisteo on Galisteo Creek (12.8 km below Cochiti), and Jemez Canyon on the Jemez
River (35.4 km below Cochiti). These dams were originally built to work in conjunction
with the levees to provide flood control to the Middle Rio Grande Valley. The three
tributary dams are still used as flood control features, but the mandate for Cochiti dam
was changed in order for a permanent pool of water to be stored behind the dam. This
pool is used for recreational purposes. In addition to the work performed by the Middle
Rio Grande Conservancy District and the Corps of Engineers, the Bureau of Reclamation
installed Kellner Jetty Jacks extensively along the study reach (Figure 7). These
permeable steel structures were used to trap sediment and stabilize the banks of the river
with the help of natural vegetation (Lagasse, 1981). Even though jetty jacks are
permeable steel structures they create enough roughness within the flow of the river that
sediment being transported in suspension is forced to drop out of the flow. The jetty
jacks are aligned parallel to the river with numerous perpendicular lines crossing into the
floodplain. These perpendicular lines run from the banks of the river to the levees.
Although these jetty jack fields are not continuous along the length of the study reach,

they are found on more than 50% of the floodplain surfaces.

13



Figure 7. Photo of Kellner Jetty Jacks along the eastern bank of the Rio Grande in the Corrales
area. Banks have remained stable since jetty jack installation during the late 1950’s and early
1960’s.
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STUDY REACH

Located directly north of Albuquerque, New Mexico, the study reach extends 25
km from U.S. Highway 550 in Bernalillo, New Mexico south into Albuquerque to the
Montano Street Bridge. The study reach has been divided into two sub reaches. The
upstream reach extends from the U.S. 550 Bridge to the Arroyo de las Barrancas, and the
downstream reach extends from the Arroyo de las Barrancas to the Montano Street
Bridge.

The upstream reach is dominated by a single-threaded, locally island-braided
planform, whereas downstream the channel is dominated by a multi-threaded, island- and
bar-braided planform (Figure 8). During periods of high discharge the high flow
channels become activated and the upstream reach transforms into a multi threaded
channel planform. The floodplain along the entire study reach is heavily vegetated with
cottonwood, tamarisk, and Russian olive trees, and was last flooded significantly in the
early 1940s. Surficial features (paleochannels, bars, and natural levees) within the
floodplain are often difficult to discern because of the dense vegetation and large-scale
anthropogenic disturbances during levee construction, jetty jack emplacement, bosque
fires and rehabilitation work. Currently, bed sediment along the length of the reach
varies between cobbles and medium sand, with gravel dominant in the upstream study

reach and medium to coarse sands dominant in the downstream study reach.
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Figure 8. Oblique air photo, looking North-East, of the U.S. 550 Bridge crossing the Rio Grande at
Bernalillo, New Mexico. The narrow, deep, mostly single-threaded low-flow channel planform which
dominates the upstream end of the study reach is clearly visible within this photo.

Tributary drainages

Four major tributaries are located within the study reach. Three of these
tributaries drain the northern Llano de Albuquerque to the west of Albuquerque and Rio
Rancho, whereas the fourth drains northeastern Albuquerque. The three western arroyos
are the Arroyos de las Barrancas, Montoyas, and Calabacillas, which drain areas
underlain by erodible Santa Fe Group sediments and mantled by eolian deposits that can
supply abundant sand and lesser gravel (Connell, 1998). Arroyo de las Barrancas enters
the Rio Grande approximately 56 km downstream from Cochiti Dam; its drainage basin
is roughly 70 km® The arroyo mouth forms a fan deposit at its confluence with the Rio

Grande. The channel has been extensively modified upstream with erosion control
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structures and flood control features. Arroyo de las Montoyas is located approximately
59 km downstream from Cochiti Dam; its drainage basin is roughly 110 km?. The lower
arroyo is straightened and concrete-lined through the town of Corrales to the Rio Grande.
The largest of these tributary basins is the Calabacillas drainage basin, which has an area
of 220 km? (Hawley et al., 1991). Arroyo de las Calabacillas enters the Rio Grande
approximately 69 km downstream from Cochiti Dam. This arroyo also drains the sand-
rich Santa Fe Group sediments found within the Llano de Albuquerque. The Calabacillas
arroyo mouth forms a natural fan deposit at its confluence with the Rio Grande, but just
above the confluence the arroyo channel has been extensively engineered.

The AMAFCA North Diversion Channel is the only significant tributary within
the study reach that enters from the east. This channel is part of an engineered network
of drainage and flood control structures that are used to drain all of northeast
Albuquergue and the adjacent Sandia Mountain front. The mouth of the channel is
heavily engineered with no observed fan formation, although the Rio Grande channel is
unusually wide in the confluence area (Figure 9). The mouth of the channel is located
approximately 65 km downstream from Cochiti Dam. The large urbanized drainage area
of impervious surfaces and network of concrete-lined channels that makes up this
drainage system allows for large discharges into the system during prolonged or intense

periods of precipitation.

17



Figure 9. Oblique air photo, looking east, of the Rio Grande - AMAFCA North Diversion Channel
confluence, at Albuquerque, New Mexico. Notice the engineered channel and arroyo mouth at the

confluence in addition to the lack of a depositional fan surface at the confluence. The typical wide,

shallow, multi-thalweg, island and bar-braided channel planform typical of the downstream half of
the study reach is well displayed in this photo.

Bordering fluvial terraces and bank characteristics

Terraces and bedrock outcrops within the study reach may have an influence on
local baselevel and channel morphology. Slump blocks may fall into the channel and act
as local baselevel controls, but this is unlikely due to the relatively small size of these
slump blocks. Also gravelly sediment eroded out of the terrace scarps may contribute
coarse bedload material to the system and could have an influence on downstream
channel morphology. The active channel of the Rio Grande in the study reach is locally
bounded by late Pleistocene fluvial terraces. At the upper end of the study reach, on the
west bank above the US 550 bridge, unconsolidated Pleistocene terrace gravels overlie an
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erosional surface (strath) formed by lateral channel migration at a former higher channel
level (Figure 10). The strath surface is about 4 m above the modern floodplain. It is cut
on upper Santa Fe Group sediments, termed the Loma Barbon Member of the Arroyo
Ojito Formation (Qtob) (Connell et al., 1998). In this area, the Loma Barbon is a poorly
sorted, medium to coarse-grained sand with mostly very weak cementation; however, a
moderately indurated zone of much stronger cementation about 35-180 cm thick directly
underlies the strath surface (Figure 10). Cementation fades out downward through a thin
transitional zone to the very weakly cemented underlying sands. The cement is largely
calcium carbonate (CaCOs) and is most likely associated with water migrating through
the unit during and after the time of erosion of the strath surface. Fluted, streamlined
erosional surfaces on the strath surface suggest that cementation may have developed
concurrently with formation of the strath, perhaps with seasonal wetting and drying of the
Rio Grande paleochannel in this area; it is possible, however, that the shallow erosional
scours were formed and preserved in loose or only weakly cemented sand.

Lateral erosion by the present Rio Grande channel has caused undercutting of the
cemented layer, during which the friable sands of the Loma Barbon member have been
preferentially eroded. This erosion and undercutting has caused toppling and sliding of
large slabs and blocks of cemented sand toward the river. A number of these blocks rest
along the bank near low-discharge levels of the Rio Grande (Figure 10). | found no

evidence of in situ cemented sands at river level, however.
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Figure 10 Cross-section of sediments exposed along the west bank of the Rio Grande at Coronado
State Monument, Bernalillo, New Mexico.

The terrace gravels overlying the strath were termed the Los Duranes Formation
(Qrd) by Connell et al. (1998). Along the river bank exposure the Los Duranes is a sandy
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gravel approximately 2 m thick; the gravel thickens somewhat westward where higher
terrace levels are preserved. The gravel is not cemented, but contains some pedogenic
CaCOs rinds on clasts. Overlying the Los Duranes terrace gravels is a veneer of sand and
silt, probably of eolian and locally alluvial origin.

In July, 2001, the bed of the west channel consisted predominantly of gravel, with
small dunes of loose sand within the thalweg near the west bank. Although detached
blocks of cemented sediments derived from the strath above are common near river level,
I did not find evidence of a cemented zone extending into or forming the riverbed.
Turbidity and flow depth at the time of the investigation did not allow direct viewing of
the bed, but wading across and through most of the reach and digging below the gravel
bed surface yielded no evidence of an indurated cemented zone within the channel. The
east bank of the west channel is part of a large island and is formed of unconsolidated
sand to pebble and cobble gravel of modern age. No cemented sand units or loose blocks
of similar material were observed along this bank. Because the strath is approximately
planar and parallel to the modern floodplain, but several meters above it, it is unlikely
that the strath and associated cemented zone converge with the modern channel bed.
Therefore | consider it unlikely that there is a continuous cemented zone underlying the
riverbed in this reach. Moderately cemented areas are present in the Loma Barbon
Member in other localities, e.g., a plug-like area of cementation just downstream of the
water treatment plant effluent channel at river mile 200.2, and other cemented zones
below the Los Duranes gravels and their underlying strath between the Bernalillo Bridge
and river mile 200.2. A geologic cross-section of Connell et al. (1998) (Figure 11)

crosses the Rio Grande within the Coronado monument area and also indicates that
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Figure 11 Cross-section from Connell (1998) showing the relationship between modern Rio Grande
floodplain deposits (Qrp), Los Duranes Formation (Qrd), and the Loma Barbon member of the
Arroyo Ojito Formation (Qto).

of the Loma Barbon Member on the channel bed is unlikely. This cross-section shows
that the Arroyo Ojito Formation (and associated locally cemented sediments) lie at depth
beneath the modern floodplain, below several tens of meters of aggraded channel fill and
floodplain deposits forming the inner Rio Grande valley. This interpretation is supported
by drill core data in the Bernalillo Bridge area collected by state agencies (Connell,
1998). Lateral migration of the modern channel system may have cut a short distance
over the Loma Barbon Member, so that it very locally underlies channel gravel, but it is
unlikely that a broad strath underlies gravel in much of the modern channel. Therefore,
cemented sediments probably do not exist to act as a natural grade control structure
within the active river channel. However, they may have some influence on the long-
term erodibility of the western margin of the Rio Grande inner valley in this area.

Within the study reach the river has cut into the Pleistocene terraces along the
west bank at a few other locations. These terraces range in height between 6 and 15

meters and are continuous feature west of the river for more than 65 km. The river
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begins to cut into these terraces approximately 3 km north of Bernalillo Bridge and
continues to meander into and away from the terraces for approximately 6 km, which
coincides with Barrancas Arroyo confluence. There are three specific locations where
the channel abuts the terraces. The segment north of Bernalillo Bridge is ~ 3 km in
length and creates a straight western edge for the channel. The height of the terrace in
this location ranges between 10 and 15 meters. The second segment is located
approximately 3 km south of Bernalillo Bridge and is ~ 750 meters in length. At this
location the channel flows perpendicular into the terrace, turns approximately 80 degrees
south and flows along the base of the terrace for approximately 750 meters. The terrace
is approximately 15 meters high at this location. The third location is approximately 5.5
km downstream from Bernalillo Bridge and is approximately 10 meters in height. The
channel cuts into the terrace at about 45 degrees and flows at the base of the terrace for
roughly 500 meters. The southern extent of this terrace segment is cut by the Arroyo de
las Barrancas. South of the arroyo the terrace scarp lies farther to the west across the
intervening floodplain in the Corrales area. The river begins to cut back into Pleistocene
terraces on the west bank south of the study reach near the Rio Grande Nature Center.
Within the Middle Rio Grande valley, the Bureau of Reclamation and the Corps
of Engineers consider discharges above 142 m*/s (5000 ft*/s) to be channel-forming
flows, based on the 1.5-year recurrence interval discharge and field evidence (T.
Massong, Bureau of Reclamation, pers. com.). Studies performed by the Bureau of
Reclamation and the Corps of Engineers for the “Rio Grande Comprehensive Plan”,
indicated that pre-Cochiti Dam channel forming flows for the middle valley of the Rio

Grande were around 170 m®/s (6000 ft*/s) (Schembera, 1963).
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METHODS

Data collected for this study includes grain size analysis from sediment samples
collected along the length of the reach, sand depth measurements from within the active
channel, bank and vegetated island sediment descriptions, island area changes, a water
surface profile, and various channel morphologic parameters including channel width,

depth, net downstream incision, and width/depth ratios.

Particle-size Analysis

Bed sediment grab samples were collected along the length of the study reach to
obtain a representative sampling of bed sediment variation. Individual grab sample
collection was focused on the active channel of the river including the banks, thalweg,
sandbars, and smaller sub-channels that branched off the thalweg. Samples were
distributed to reflect the relative importance of different textures within a local sub-reach.
The following methods were used for the grain size analysis: Following desiccation, a
sample splitter was used to obtain about 100 grams of sample, weighed to 0.01 g. Using
a standard set of sieves with an interval of 0.5¢, the sample was sieved for 15 minutes in
a Ro-Tap shaker. Individual sieve fractions were weighed and entered into a spreadsheet
to calculate distribution of grain sizes. Using the cumulative distribution curves created
in the spreadsheet, median grain size (Dso) values were determined and reach-wide and

sub-reach grain-size plots were created.
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Bed Sand-depth Measurements

Sand depth measurements from within the active channel of the study reach were
measured using a 1.5-meter length of rebar, the maximum practical length. The site
locations were chosen to represent within-reach variations, from within the thalweg to
emergent sandbars. The rebar was hammered into the sandy sediment and when
resistance became significant in hard sediments, it was assumed that a gravel deposit was
encountered, and a sand depth was recorded. In areas where little resistance was
encountered and the rebar was hammered completely into the sediment, a depth of greater

than 1.5 m was recorded.

Bank Sediment Descriptions

Detailed bank and vegetated island descriptions were obtained at four locations
along the length of the study reach. This work included generalized descriptions of
sediment sizes and distributions within the exposure as well as unit thickness.
Sedimentary structures, if any, were also recorded along with the distribution of root

fragments.

Vegetated Island Area

Vegetated island areas were measured from GIS shape files from air photos
provided by the Bureau of Reclamation for the years 1972, 1985, and 1992, and shape
files created by the author for this project using the 2001 digitized air photos of the study
reach. The vegetated islands were traced and converted into a coverage using Arcinfo,
which allowed area calculations to be compared with the area measurements from the

Bureau of Reclamation files. | followed the same procedure used by Bureau of

25



Reclamation personnel, who traced the vegetated perimeter of islands visible on the air

photos to create the shape files.

Water Surface Profile

A water surface profile was surveyed along the length of the study reach. This
work involved use of an automatic level and 3-meter stadia rod to measure elevations,
and a real-time differential GPS system with submeter accuracy for map locations.
Because of the lack of accessible benchmarks at the starting point of the survey
(Bernalillo Bridge), an arbitrary datum with elevation of 100 m was established at a
stable temporary benchmark on a bridge abutment for use during the survey. Future
work will tie the survey into known benchmarks at Alameda Bridge and downstream
locations. Survey work was conducted at discharges of about 1090 cubic feet per second
(ft/s) (30.86 cubic meters per second (m>/s) for the upstream part of the profile and 800
ft3/s (22.65 m*/s) for the downstream part. Distances between survey points ranged from
approximately 50 m to more than 300 m. Elevations were corrected for Earth curvature
and refraction effects. The survey generally followed the thalweg of the river, and point-
to-point distances were calculated to plot a long profile. Water surface slopes were also
calculated between survey points, and general slopes of subreaches were estimated using

standard linear regression.

Channel Morphology and Hydraulic Characteristics

Various channel morphologic parameters were calculated using reach-wide
repeated cross-sections from the Bureau of Reclamation. Changes in width, depth, and
width/depth ratios were calculated. This study compares pre-Cochiti values (1971) to the
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most recent post-Cochiti values (2001). For calculations of the average channel depth
along the study reach values for 1971, 1980, 1998, and 2001 were used. Channel width
and net incision values were calculated directly from the cross-section data. Average
depth values were determined using the calculated average depth based on channel area
divided by channel width. In order to calculate the cross-sectional area a “bankfull”
water surface was estimated using the locations of the floodplain surfaces measured in
the cross-sectional surveys, although the floodplain is essentially abandonded at present
because of channel incision and reduced peak flows. Values for downstream changes in
channel incision where calculated based on yearly changes of average channel depth.

The width/depth ratio values were calculated using the standard formula width divided by

mean depth.
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RESULTS

Bed Sediment Size Variations

Directly after closure of Cochiti Dam in 1973, the study reach experienced a
coarsening of bed sediments from fine sand (average Dsy of 0.21 mm or 2.25¢) to
medium sand (average Dso of 0.27 mm or 1.88¢) (Figure 12). This coarsening occurred
prior to the gravel- to sand-bed transition zone reaching its current location within the
study reach. The coarsening of grain sizes is thought to be a direct result of initial
sediment-deprived releases from Cochiti Dam after dam operations went into effect.

A total of 125 bed sediment samples were collected along the length of the study
reach. Sediment size terminology used here follows the Wentworth classification (Table
1). Sampling was particularly focused in and around the apparent transition zone
between pebble and cobble gravel bed sediments (2-128 mm) dominating the upper reach
and fine to coarse-grained sands (0.125-1 mm) of the lower each. The largest clasts (Dgs
of ~64 mm) were located at the upstream end of the reach near U.S. 550, whereas the
smallest clasts (Dgs of ~0.125 mm) were found around the Arroyo de las Montoyas.
Median grain sizes throughout the reach range from 64 mm to 0.125 mm. The coarsest
median grain sizes (64 mm to 1 mm) are found in the upstream portion of the reach.
Downstream of Arroyo de las Barrancas Ds grain sizes become significantly finer, but

coarse-grained patches remain within the channel (Dso of 32 mm to 0.125 mm).
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Table 1 Wentworth grainsize classification scale used in this study (from Wentworth, 1922).

Millimeters uwm | Phi (o) | Wentworth size class
-20
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1024 -10
ng :g Cobble (-6 to-84¢)
16 -4 Pebble (-2 to -60) =
4 -2 o
3.36 -1.75 ']
2.83 -1.50 Granule
2.38 -1.25
2.00 -1.00
1.68 -0.75
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1.19 -0.25
1.00 -0.00
0.84 0.25
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0.30 300 1.75 Lep)
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Figure 12 Plot showing the change in average median grain sizes of bed-sediment within the study
reach before (pink squares) and directly after (blue diamonds) closure of Cochiti Dam. CO-Line
numbers correspond to Bureau of Reclamation repeated survey of cross-section lines within the
study reach. All samples on this plot are within the medium to fine-grained sand range. Sediment
data was provided by the Bureau of Reclamation.

Downstream of Arroyo de las Montoyas this fining trend continues, but median grain
sizes in the gravel range are largely absent. The largest median grain sizes sampled
below Arroyo de las Montoyas are no larger than very coarse sand and granules (about 2
mm).

Another trend observed in the grain size data is a reduction in variability of
particle size distributions in general within sub-reaches downstream. The most upstream
sub-reach around the U.S. 550 Bridge has a range of median grain sizes from 1-64 mm,
whereas the most downstream sub-reach south of Paseo del Norte has a range from 0.25-
1 mm. Although the upstream sample areas in the reach contain the coarsest grained

material, the largest variability with the study reach occurs around the transition zone.
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Specifically, the areas of highest variability are found around the two major arroyos

within the study reach. The northernmost of these two arroyos, Arroyo de los Barrancas,

has a range of median grain sizes from 0.125-16 mm. The southern arroyo, Arroyo de las

Montoyas, has a wider range of median grain sizes, from 0.125-32 mm. South of the

Arroyo de las Montoyas grain size variability continues to decrease. Near the mouth of

the Arroyo de las Calabacillas Dsp ranges between 0.375 mm and 2 mm (Figure 13).
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Figure 13 Median grain size values for study reach showing the downstream fining trend and

decrease in median size variability through the transition zone between Arroyo de las Barrancas and
Arroyo de las Montoyas (blue points). Red points are reach-wide pre-Cochiti dam data. Grain sizes
in the study reach range from fine sands to large cobbles. Grainsizes were measured in mm and phi
(phi = -log,d (mm)).
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In addition to the decrease in median grainsizes with distance downstream there is a
related increase in the degree of sorting of grains (Figure 13). There is a decrease in
sorting between the upstream, moderately sorted, gravel dominated reach and the very
poorly sorted sand and gravel reach found within the transition zone. Figure 13 also
shows that downstream of the transition zone sediment sorting increases and the bedload
sediment becomes moderately sorted as the distance downstream of the transition zone

increases (Figure 14).
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Figure 14 Degree of sorting as a function of distance downstream from Cochiti dam. The most
poorly sorted sediment can be found within the transition zone located between Barrancas Arroyo
and Montoyas Arroyo.

Bed Sand Depths

Sand depth measurements were taken at 13 locations along the study reach
between U.S. 550 and Alameda Bridge. Along the length of the reach sand depths ranged
from 25 cm to greater than 155 cm. The shallowest sand depths were measured in the

upstream half of the study reach where depth ranged from 25 cm to greater than 155 cm.
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Conversely, in the southern half of the study reach all sand depths measured were greater
than 155 cm (Figure 15). The amount of channel area composed of sand deposits varied
with distance downstream. The far upstream end of the study reach near U.S. 550 Bridge
contained approximately 5-10% sand within the high-flow channels, and less than 5%
sand within the active channel. These percentages are based on visual estimates
performed while in the field. The middle section of the reach around Arroyo de las
Barrancas and Arroyo de las Montoyas, based on field observations, was estimated to
contained 30% to 60% sand within the active channel and high flow channels. The
southernmost section of the reach from Alameda bridge south to Montano bridge is
estimated to contain greater than 95% sand within the active channel and high-flow
channels. Field observations indicate that a much smaller proportion of the overall

channel width in this downstream reach is composed of high-flow channels.

Bank Sediments

Field observations of bank sediments revealed a relatively uniform sandy
character to the main east and west banks. Cut-bank exposures were dominated by fine
to medium-grained sands, with minor mud lenses distributed within individual sediment
layers. The main exceptions to this are areas where the active channel has cut into
Pleistocene terrace deposits along its western margin north of the Arroyo de las
Barrancas. These ~5-15 m high terrace deposits consist primarily of sand to cobble
gravel. Although the gravel deposits are exposed in approximately 45 to 50 percent of
terrace scarps, the gravels make up about 10 to 25 percent of the exposed sediment in
those locations. Units of pebble and cobble gravel are also commonly found within the
vegetated island sediments in the upstream part of the reach. About 10 to 50% of

33



vegetated island sediments are composed of gravel-dominated units, with the most
gravel-rich units found upstream of Arroyo de las Barrancas. In general throughout the
study reach, pebble gravel was observed within each of the measured vegetated island
sections, whereas the measured bank sediment section contained packages of sand-
dominated material.

The measured sections ranged in thickness between 100 cm and 155 cm (Figure
15 and Table 2 and 3). Each of the measured sections had between four and seven
individual units, which ranged in thickness between 5 cm and 90 cm. The dominant
grain sizes found within each of the units were medium to coarse-grained sands. Units
with high percentages of gravel had medium to coarse-grained sand matrices. Although
sedimentary structures were observed within a few units, they were not very prominent,
but included laminar plane bedding, ripple structures, and minor small-scale ripple cross
beds. Root fragments were also observed within three of the four measured sections.
Based on field observations of bank sediment along the length of the reach, I infer that
the described sections are representative samples of the bank and vegetated island
sediments found along the length of the study reach. Field observations indicate a
dominance of medium to coarse sands and gravel within sediments of vegetated islands
in the north of the reach, with the percentages of gravel reducing downstream. In
contrast, bank deposits are consistently composed of fine to coarse-grained sands with

minor mud lenses along the entire study reach.
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Figure 15 Reach-wide sand depth measurements (cm) and locations, measured stratigraphic sections
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Table 2 Measured and described Rio Grande sediments from vegetated islands and bank deposits.

Vegetated island sediments loeated approximately 200 meters south of LS. 550
Strat-1 |bridge. The thickness of this section was 155 cm and contained five identifisble
units.

Depth  |[Description
0-40 ¢m  |fine grained sand, [aterally continuous, thickness remains constant.
many roots present, laminar bedding visible, possible fpple s-bads

40-50 em  [fine-grained sand, with & high % of silt'day. Layer is more resistant
to excavation

80-57 em  |thin =and layer. medium to coarse grained, no pebbles present
laterally continuous

B7-65cm  |fine grained sand with @ moderate amount of silticlay.
forms chiff in cut.

65-155 cm |coarse sand to cobble gravels, mostly pebile gravels and vary
coarse sand, laminar bedding visible and possible small scale x-heds.

‘Vegetated island s=diments, located approcamately 1200 meters south of LS.
Strat-2 550 bridge, and had a total thickness of 100 cm with seven identifiable units

Depth Description

010 em  |fine-sand, no visible sedimentary sinuciures

this layer pinches out to left of measuring tape and thickens o the
right of the measuring taps.

10-20 cm  |pebile gravel with minor coarse grained sand component.
laterally discontinuous

20-30 em |coarse sand, layer thickness vanies |aterally.
forms sharp contact with [ayer below it

30-57 cm |well sorted fine sand, laterally continucus
small ripple x-beds visible
thickness varies slightly [aterally

H7-T0cm  [medium grained sand
laterally discontinuous, thickness varies laterally

T0-B0 om  |well sorted fine sand, [aterally continucus
small ripple x-beds visible
thickness varies slightly laterally

30-100 cm |pebile gravels in s medium grained sand matrix
laterally continuous, although thickness varies
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Table 3 Measured and described Rio Grande sediments from vegetated islands and bank deposits.

Yegetated island sediments located approzimately 1000 meters south of the Armoyo

Strat-3  |de las Montoyzs. This section was 120 em thick with four identfisble units.
Depth Elescriptic:n
0-580 em  |medium to fine grained sand, laterally continuous, planar
larminations, small roots in upper 30 cm.
50-T0 em  |medium to very coarse sand, some pea size gravel (<5%)
gravel found at 2-70 cm depth.
70100 cm |rmedium to coarse sands, some pebblas interspersed
wathin unit {<7%].
100-120 em [fine ta medium sands, no pebbles, no sedinnentary
structures, laterally continuous.
Bank sediments located approcimately 400 meters north of Alameda Bridge;
Strat4  |its total thickness was 150 em and had six idendfiable units.
\Depth Description
0-35 cm fing to medium grainsd sand, with minor mud lenses
hardes: layer of bank sediments, possibly due to precipitation
Imfiftrating imto grownd at site, fine grained,
hard to determine composition of grains
35-40 cm & crn thick dark brown mud layer
40-60 cm wary fine grained sand, ~ 20 cm thick, poorhy sorted
sub-angular to sub-roundsd grains, raddish brown,
many roct fragments
60-110 cm | Sandy silt'clay. Rich in organics, many roots throughout
layer, gradually coarsens upward into fing sand
sand within the clay is fine fo very fine grained
becomes dominantly fine grained at 80 cm.
110-115 con |5 cmn thick mud layer, this unit iz hard and well compacted
brown fo black in color
115150 con Junconsolidated medium grained sand. poorly sorted

angular to sub-rounded grains, sand body appears
to have been oxidzed
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Vegetated Island Areas

Total vegetated island area along the study reach has changed significantly since
1972 (Figure 16). In 1972, two vegetated islands with a combined surface area of 0.010
km?were mapped within the study reach. In 1985, 12 years after the closure of Cochiti
Dam, the number of vegetated islands had increased to 12. These islands had a combined
surface area of 0.056 km?. During the 7-year period between 1985 and 1992, the number
of vegetated islands increased to a total of 99, and the total surface area increased to
0.386 km®. The most remarkable increase in total vegetated island surface area occurred
between 1992 and 2001. During that period the total number reached 144 vegetated

islands within the reach with a total surface area of 0.896 km?.
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Figure 16 Changes in vegetated island areas since closure of Cochiti Dam. Island areas were
calculated from shape files created in a GIS by Bureau of Reclamation personnel and in this stud

Water Surface Profile
The surveyed water surface profile indicates that the Rio Grande between
Bernalillo Bridge and the Arroyo de las Montoyas has an overall slope of 0.0008. Below

this arroyo to near Alameda Bridge, overall slope increases slightly to 0.0009. There is
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also a slight decrease in slope for ~200 m above the Arroyo de las Barrancas. In this
location slope above the arroyo was measured at 0.0007, whereas adjacent to and directly
downstream of the arroyo for ~100 m slope increases to 0.0008, and higher-velocity flow
over the bar built by the arroyo is apparent. There is also a slope decrease above the
Arroyo de las Montoyas, but a slope increase below is not apparent in the field, and
surveys done at different discharges across this area prevent close delineation of slope

changes (Figure 17)
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Figure 17 Long profile of study reach from water surface leveling survey data. Primary survey map
locations (blue diamonds) were recorded using a differential GPS unit with sub-meter accuracy. The
secondary survey map locations (pink squares) were recorded with a handheld Garmin 12 GPS unit
with meter accuracy. Linear regression equations of the form y = mx + b were calculated to
determine the slope of each survey; where m = the slope and b = the y-intercept

Channel Morphology

The active thalweg channel width within the study reach varies dramatically along the 25
km; upstream the low-discharge channel width is typically between 20 and 30 m and
dominated by a single deeply incised thalweg. The total width of the upstream channel

between the floodplain banks ranges between 128 meters and 268 meters. In the southern
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section of the study reach the channel is ranges in width between 108 meters and 268

meters, with a shallow, multiple thalweg planform. The low-discharge channel width is

Figure 18 Visible channel planform transition zone: a single threaded, locally island braided channel
with a deep, fast flowing thalweg (upstream of Barrancas Arroyo) undergoes a transition into a
wider, multi-threaded, island and bar-braided channel with shallow, slower flowing multiple
thalwegs (downstream from Montoyas Arroyo).
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equal to the total channel width as measured between the floodplain banks. There is a

general decrease in total channel width as distance downstream increases (Figure 19).
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Figure 19 Total channel width change versus distance downstream from Cochiti Dam.

The decrease in total channel width with distance downstream contrasts with an
increase in the width/depth ratio as downstream distance increases. The upstream reach
has a range of width to depth ratios between 54 and 180. With the exception of the value
at 180 measured at CO-30, each upstream width to depth ratio was found to be below

100. Downstream the width to depth ratios range between 104 and 289 (Figure 20).

42



Between the Arroyo de las Barrancas and the Arroyo de las Montoyas there is an
observable change in channel morphology. A single-threaded, locally island-braided
channel with a deep, fast-flowing thalweg undergoes a transition into a wider, multi-

threaded, island and bar braided channel with shallow, slower-flowing multiple thalwegs

(Figure 18).
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Figure 20 Changes in total channel width to depth ratio as distance downstream from Cochiti dam
increases.

Upstream, low discharges below 2000 ft*/s (56.63 m®/s) are contained within the
dominant single threaded channel. With increased discharges various elevated channels
become activated and create a multi-threaded, island-braided planform. Below Arroyo de
las Montoyas the multi-threaded island- and bar-braided planform exists at low flows and

does not change as dramatically with discharge. At flows < 400 ft*/s (11.32 m%s) more
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sand bars become exposed and increase the number of channels present within the
southern section of the reach. Flows above 400 ft%/s (11.32 m*/s) combine some of these
minor thalwegs, but the number of vegetated islands and recently stabilized sand bars

south of the Montoyas Arroyo keep the multi-threaded planform in place.
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Figure 21 Net incision as a function of distance downstream from Cochiti Dam through the study
reach. Differences between 1972 average bed elevations and 2001 average bed elevations at Bureau
of Reclamation cross-section lines were calculated to determine amount of net incision.

Channel incision over the last 30 years has created an elevated and abandoned
floodplain along the entire length of the study reach. Net channel incision calculated
from the differences between 1972 bed elevations and 2001 bed elevations from within
the reach ranges between about 2.5 m upstream to 1.2 m in downstream (Figure 21).
Repeated cross-section, CO-29, measured approximately 20 meters upstream of U.S. 550
bridge shows the transformation of the upstream study reach from a wide and shallow
(high w/d ratio) channel into a deep and narrow (low w/d ratio) channel configuration.
This pattern of incision is consistent with other locations within the upstream half of the
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study reach. The 1998 cross-section also shows a large vegetated island which has
formed at this location since the closure of Cochiti Dam (Figure 22). Repeated cross-
section, CO-34, measured roughly 30 meters upstream of Alameda bridge records the
level of channel degradation which has occurred at this location at the downstream end of
the study reach (Figure 23). This pattern is consistent with other locations within the
downstream half of the study reach.

Channel incision along the length of the study reach has not progressed at a
uniform rate along the length of the study reach. Incision rates were calculated for the
upstream reach, which has experienced the greatest amount of incision (Figure 24).

Since closure of Cochiti dam the fastest rate of incision calculated was over the 9 year
period between 1971 (2 years before dam closure) and 1980. During this period the
upstream reach, around Bernalillo Bridge, incised 0.7 meters which translates to a rate of
approximately 0.07 meters per year. The 18 years between 1980 and 1998 experienced a
significant decrease in incision rates. During this period the upstream channel incised 0.5
meters which translates to a rate of 0.027 meters of incision per year. Between 1998 and
2001 the study reach experienced very little incision. The upstream reach incised
approximately 0.1 meters during this three-year period. This translates to a rate of 0.03
meters per year, which is slightly higher than the rate calculated for the previous period

of record 1980-1998 (Figure 24).
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Figure 22 Record of total channel change for a 27-year period (1971-1998) at Bureau of Reclamation
cross-section CO-29, located ~20 meters upstream of U.S. 550 Bridge. Notice the significant change

in cross-sectional area and the formation of a vegetated island within the middle of the channel at
this location
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Figure 23 Record of total channel change for a 27-year period (1971-1998) at Bureau of Reclamation
cross-section CO-34, located ~30 meters upstream of Alameda Bridge. Although the channel has

incised a maximum of about 1.2 meters, at this location the channel cross-section has retained its
general morphology.
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Figure 24 Increase in average channel depth below adjacent floodplain surfaces with distance
downstream between the years 1971 and 2001. Differences in channel depth between years of record
were used to calculate rates of incision for the upstream reach.
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ANALYSIS AND INTERPRETATIONS

Bed sediment variations within the study reach can be attributed to several
factors. The relative abundance of gravels within island sediments compared to the
gravel-poor sandy bank sediments with very little gravel suggest that a significant amount
of gravel has moved into the reach since closure of Cochiti dam. The island gravels may
in large part represent coarser bed sediment transported into the study reach because of
post-dam channel incision upstream. At least some gravelly bed sediments within the
reach are likely the result of winnowing of finer-grained sediment with channel incision
and resulting development of a gravel lag. The scarcity of gravel in the main east and
west banks along the entire reach and the lack of shallow gravel deposits at shallow depth
within the bed, however, suggest that gravel is relatively rare in pre-dam floodplain
deposits. Nonetheless, present gravelly channel deposits may be the result of both
processes.

Tributary inputs have also likely played an important role in bed sediment
characteristics in the study reach. Leopold (1946) described a September 1941
thunderstorm that caused the Arroyo de las Calabacillas to flood at an estimated 10,000
ft*/s (283 m*/s). Discharges for the Montoyas and Barrancas arroyos were estimated at
2000 to 4000 ft*/s (57-113 m*/s). A large fan deposit at the mouth of the Calabacillas
arroyo was estimated by Leopold (1946) to contain almost 150,000 m® of sediment,
composed mostly of sand, although this flood also deposited some large boulders. A
much greater volume of sand entered the Rio Grande channel and was carried

downstream. This event, although uncommon, nonetheless illustrates the potential of the

48



large arroyos draining the northern Llano de Albuquerque to episodically contribute large
volumes of sandy sediment to the Rio Grande.

The transition zone between coarse and fine-grained material has progressed
downstream since dam closure into its current position within the study reach. Lagasse
(1981) illustrated a fairly abrupt grain size transition zone located at about river kilometer
35 (distance downstream from Cochiti Dam) in 1980, close to the mouth of the Jemez
River (a significant source of sediment prior to damming). The present transition is more
diffuse, but I estimate its position to be between river kilometer 51 and 55. This 4 km
range is appropriate since field observations do not indicate an abrupt change in grain
sizes. The 16 km of downstream progression over the past 23 years translates into a rate
of about 0.7 km/yr since 1980, which is significantly slower than the rate of 5 km/yr
originally measured by Lagasse (1980) between 1973 and 1980. A rate of downstream
progression of coarsening calculated by a second method plotting the year and
downstream location where the median bedload grainsize was greater than 2 mm (Figure
25). This is the point where the channel is assumed to have gravel-dominated bed
sediment. Using standard linear regression, a rate of 2.14 km/yr was calculated from
Figure 25. Although the data in Figure 25 shows a positive correlation the scatter of the
data points indicates that the >2 mm transition was, at times, recorded at multiple
locations during the same year. This suggests that the location of the >2 mm median
grainsize transition may not be a good indicator for transition zone location along the
study reach.

It is unknown if the grain size transition zone is currently moving downstream,

and if so, at what rate. It may presently be in a static state due to the drought currently
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affecting the region. An increase in precipitation would increase flows within the study
reach and potentially reactivate the downstream progression of the transition zone. The
transition zone may also simply be moving too slowly to directly observe any significant
change given the short period and limited data of this study.

According to Williams and Wolman (1984), movement of this coarsening front
will likely slow until a static transition zone develops, which may be strongly influenced
by tributary sediment inputs. The change in median grain size variability occurs between
the Barrancas and Montoyas arroyos. This suggests that the infrequent sediment inputs
from these two main arroyos may in part control the present location of the transition

zone. Grain size analysis at these locations indicates that grain sizes mainly between 128
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Figure 25 Plot of distance downstream of the Dsy > 2mm transition over time since the closure of
Cochiti dam in 1973. Data compiled from Harvey, 2003 and this project.

mm and 0.125 mm are being introduced into the system, dominated by very coarse to
medium sand (2 - 0.25 mm). Although granules are found downstream to Alameda

Bridge, field observations suggest that pebbles and cobbles (4-256 mm) may not be
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actively transported south of the Arroyo de las Montoyas. The granules could be an
indication that channel coarsening to include significant gravel bed sediments is
beginning to progress south of the Arroyo de las Montoyas.

The aggradation of sediment at the arroyo mouths is observed within the water
surface profile as the changing of the slope at both arroyo locations. The slope changes
at the Arroyo de las Barrancas and the Arroyo de las Montoyas indicate that some coarse
sediment remains near the arroyo mouths and locally controls slope. At typical present
discharges (<1500 ft*/s or <42.47 m?/s), the system is unable to remove the coarser
fraction of introduced sediment, causing reduction of slope above the tributary fan.
Downstream of the sediment sources, water surface slope increases as water flows over
the coarse sediment accumulation.

Above the Arroyo de las Barrancas pebble and cobble gravels are the predominant
grain sizes within the active channel and thalweg. The majority of sand present within
the overall active channel area above Arroyo de las Barrancas is being stored in high-
flow channels along with additional pebble and cobble gravels. Based on field
observations it is estimated that 95% of active channel bed sediment are pebble and
cobble gravels. Stored sediment within high-flow channels consists of approximately
65% gravel and 35% sand within the upstream areas of the study reach. Downstream of
the Arroyo de las Montoyas channel bed sediment composition is estimated at 95% sand
and 5% granules and pebble gravels. Sediment stored within vegetated islands south of
Arroyo de las Montoyas is estimated at approximately 85% to 90% sand with the
remaining sediment composed of granules and pebble gravels. Using field observations

of discharge and stage, | estimate that a discharge of over 2500 ft*/s (~70 m*/s) would be
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required in order to move the sand stored within the high-flow channels downstream.
This would flood the high-flow channels and mobilize the sand-sized particles. A
significantly higher discharge (5000-7000 ft%/s or 142-198 m®/s) would be required to
mobilize the gravels stored within the high-flow channels.

The increase in total number of vegetated islands and island surface area can also
be attributed at least in part to controlled discharges from Cochiti Dam. As flows are
reduced and incision continues downstream, water becomes confined to a smaller channel
area, and more stable areas of sediment in storage become available for plant colonization
by tamarisk, Russian olive, and willows. Plants stabilize large areas within the active
channel zone and promote further colonization along the margins of vegetated islands and
at extreme low flows on top of emergent sand bars. When discharges remain low (<1500
ft*/s (42 m3/s)) throughout the year, more emergent sand bars are becoming stabilized
which further decreases the availability of transportable sediment.

Changes in channel morphology downstream from U.S. 550 are also likely to
exist mostly because of dam effects and current channel bed sediment conditions, as
opposed to pre-dam downstream changes. The single-threaded dominant channel
planform, low width-to-depth ratios and higher incision rates found in the upstream reach
are a direct result of the sediment trapping upstream of Cochiti dam which provided the
catalyst for the locally armored condition and gravel-rich sediment characteristics found
within the active channel. The armoring of the channel and the absence of easily erodible
sands within the banks exposed to low flows, in combination with the reduced post-dam
flood discharges jetty jacks and bank vegetation inhibits lateral channel migration and

maintenance of a braided channel planform. Jetty jacks and vegetation along the channel
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banks create turbulence within the flow along the channel margin. The disrupted flow
promotes sediment deposition and creation of stabilized surfaces within the active
channel. This process inhibits the maintenance of a braided channel planform and
effectively reduces lateral channel migration within the active channel of the river.
Channel morphology is significantly affected by changes in vegetated island
areas, sediment inputs from tributaries, bed sediment characteristics and discharge, but
the reduced bedload may be the dominant factor driving upstream channel morphology
within the upstream reach. With the construction of Cochiti dam flows became highly
regulated and large amounts of sediment became trapped upstream of the dam. The clear
water released from the dam led to the immediate degradation and local armoring of the
channel downstream from the dam (Lagasse, 1980). The continued clear water releases,
in addition to the lack of bedload sediment coming from upstream, has caused channel
degradation to progress downstream into the study reach. Besides the elimination of
upstream sediment inputs and flood peaks from the annual hydrograph, flow regulation
also increased the baseflow discharge during the year. Although there is some sand being
stored within the channel of the lower portion of the upstream reach, | infer that there is
simply not enough sand being delivered to the channel in the post-dam period to keep the
higher, more effective flows from moving the great majority of it downstream.
Significant sandy sediment may be discharged into the system from the
tributaries. Specifically, within the watersheds of the Arroyos Barrancas and Montoyas,
highly erodible Santa Fe group sediments and younger eolian deposits contribute large
amounts of sediment when a storm creates enough runoff to discharge into the mainstem

Rio Grande. Although the potential importance of these arroyo inputs is recognized,
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there are currently no data on amount of sediment discharged into the system during any
event following the construction of Cochiti dam, and such inputs would be also difficult
to measure in the future. The visible change in channel planform south of the two main
arroyos suggest that these inputs of sediment are important controlling factors of
downstream channel morphology. In combination with sediment trapping by Cochiti
dam, tributary sediment inputs are probably more important controlling factors on
channel morphology than the current discharge regime. Alternately, it may be that the
sands within the downstream reach have not been flushed through the study reach but

will be by the downstream progression of the transition zone.
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CONCLUSIONS AND SUMMARY

One of the primary foci of this study of post-dam downstream changes is bed
sediment grain sizes. Three hypotheses were formulated and tested. The first proposed
that the current bed sediment texture within the study reach is little changed from pre-
dam sediment conditions and reflected the expected downstream fining of grain sizes as
distance from primary gravel sources decreases. The sediment data do not support this
hypothesis. The pre-dam bed sediment median grain size was fine sand along the entire
length of the study reach (Figure 12). The coarsening of bed sediment, from fine to
medium sand, occurred directly after dam closure, along the length of the study reach,
and dramatically increased in the 30 years following.

The second sediment hypothesis is that the gravel bed found in the upstream reach
is a lag deposit composed of gravels present within the floodplain sediments prior to
channel incision. Although minor pebble gravels have historically been observed within
the pre-dam channel, there is little evidence of gravel found within the modern floodplain
sediments even in the upstream reach. This suggests that pebble and cobble gravels
currently found within the active channel were not present in major quantities within the
study reach prior to the 1940’s, when the observed floodplain sediments were deposited.

The third hypothesis tested suggested that the gravels found within the study
reach were primarily transported downstream from incising reaches to the north into the
study reach. The data collected for the study most strongly support this hypothesis. The
lack of gravel within the bank sediments combined with the presence of gravel within the
younger vegetated island sediments suggests that gravel was introduced into the study

reach after the closure of Cochiti Dam. Following closure of the dam channel incision,
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coarsening of bed sediment and formation of vegetated islands began to occur. In
addition to the introduction of gravel into the study reach, bed sediment coarsening can
also be attributed to the selective transport of sand downstream into the lower and beyond
the study reach. Upstream incision and movement of gravel downstream into the study
reach was recorded within the stored sediment, which ultimately stabilized and formed
into the vegetated islands. Gravel within the vegetated island sediments decreases in size
and volume with distance downstream which indicates that the effects of upstream
incision has not completely translated downstream through the length of the study reach.

This study characterizes the geomorphic and bed-sediment transition zone within
the study reach currently located between the Arroyos Barrancas and Montoya. In the
future (1) sediment inputs from tributaries will slow or halt the downstream progress of
the zone through the reach, or (2) clear water releases throughout the year from Cochiti
Dam will continue to facilitate movement of the zone downstream. This project could
not provide an answer to this question, but the current location of the transition zone
located between Barrancas Arroyo and Montoyas Arroyo suggests that the sediment
inputs from these two arroyos may have slowed the migration of the transition zone.
Further study is required to determine if the transition zone is static or if the downstream
movement will continue, and at what rate.

The clear water releases from Cochiti dam are important factors that contribute to
current channel morphology, channel degradation, and increases in vegetated island
areas. With recent drought conditions, it may be that flows through the study reach are
not large enough to force the downstream progression of the transition zone. An increase

in peak flows through the study reach would potentially facilitate the downstream
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movement of the transition zone. A decrease in the sporadic sediment inputs from
Barrancas and Montoyas Arroyos could also potentially promote the downstream

progression of the transition zone.

This project has shown that Cochiti Dam has affected the study reach in a number
of ways. Bed sediment along the length of the study reach has progressively become
coarser and the number of vegetated islands and associated stabilized surfaces has
increased dramatically since the closure of Cochiti Dam. The development of a transition
zone between Arroyo de las Barrancas and Arroyo de las Montoyas delineates an
upstream reach and a downstream reach. The upstream reach is characterized by coarse-
grained bed sediment (pebble and cobble gravel) and a deep, narrow, mostly single-
threaded channel planform that becomes island-braided only at higher flows. The
downstream reach is characterized by medium and coarse sand bed sediment and a
shallow, wide, multi-threaded bar and island-braided channel planform. Sediment inputs
from tributaries are probably important controls on grain size distributions and water
surface slope changes within the study reach. The current rate of downstream
progression of the coarse to fine grained bed-sediment transition zone is unknown. At
higher discharges the grain size transition zone could possibly continue movement
downstream. Continued channel incision and decreased flood peaks will continue to
increase the surface area of bars and islands available for plant colonization including by
tamarisk, Russian olive, and willow. This will further reduce the amount of stored
sediment available for downstream transport at high discharges. Increased channel

incision will also promote continued downstream formation of a dominant single-
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threaded low-flow channel, and decreased flow frequency in and abandonment of higher

multiple channels.
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Appendix A Reach-wide sieve analysis data

Appendix B Water surface profile data

59



Appendix A Reach-wide sieve analysis data
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Appendix B Water surface profile data

corrected level point to
elev (m, level elev (m, point earth curvature

arbitrary arbitrary i ion for each sum of corrected

PointName X Y datum) datum) {m) distance m point corrections elevation
h2osurf#1 358524.88 3910103.39 97.90 97.90 0.00 0.00 0 1] 97.90
h2osurf#2 358517.75 3910035.14 97.87 97.87 8862 68.62 0.000317851 0.000317851 97.87
h2osurf#d thm2 358497.19 3909927.32 97.77 9r.77 109.76 178.38 0.000813231 0.001131082 ar.77
h2osurf#4 356455.11 3909888.25 97.69 97.69 57.42 235.81 0.00022256 0.001353642 97.69
h2osurf#s 358372.88 3909803.48 97.49 97.49 118.11 353.92 0.0009417 0.002295342 97.49
h2osurf#6 358304 22 3809707.37 97.25 97.25 118.10 472.02 0.000941455 0.003236798 97.26
h2osurf? 358311.5 3909467 87.05 97.05 240.48 712.50 0.003903575 0.007140372 97.06
h2osurf#8 358293.02 3909261.29 98.82 96.82 208.54 919.04 0.002879423 0.010019795 96.83
h2osurf#9 a58272.16 3809080.51 96.60 96.60 181.98 1101.02 0.002235367 0.012255162 96.61
h2osurf#10 3568220.36 3908930.69 86.50 96.50 158.52 1259.54 0.001696226 0.013951388 96.51
h2osurf#i1 358287.56 3908777.68 96.33 96.33 16712 1426.66 0.001885133 0.015836521 98.35
h2osurf#12 35818233 3908611.63 96.19 96.19 196.59 1623.24 0.002608602 0.018445123 96.21
h2osurf#13 358057.85 3908415.81 96.00 96.00 232.04 1855.28 0.00363425 0.022079373 96.02
h2osurf#14 357851.52 3508200.68 95.73 95.73 298.10 2153.37 0.005998157 0.028077531 95.76
h2osurfi#i5 35764691 3908092.78 95.59 95.59 23131 238468 0.003611476 0.031689007 95.62
h2osurf#16 357406.97 3907948.34 85.41 95.41 280.06 2664.74 0.005294303 0.036983309 95.45
h2osurf#17 357151.11 3907829.94 95.24 95.24 281.93 294667 0.005365096 0.042348405 8528
h2osurf#18 356863.68 3907702.49 95.02 95.02 314.42 3261.09 0.006673017 0.049021422 95.07
h2osurf#19 356607.39 390745485 o477 94.77 356.28 3617.47 0.008573184 0.057594606 94.83
h2osurf#20 356382.85 3907241.53 9452 94.52 309.72 392719 0.008474845 0.064069451 94.58
h2osurf#21 356261.24 380711113 94.32 94.32 178.31 4105.50 0.002146038 0.066215489 54.39
h2osurf#22 356119.49 3906837.22 24.12 94.12 308.41 441391 0.006420583 0.072636072 94.19
h2osurf#23 356049.93 3906593.25 93.92 93.92 253.89 4667.60 0.004344297 0.076980369 94.00
h2osurf#24 355797.67 3906436.65 93865 93.65 296.92 4964.52 0.00595071 0.082931079 93.74
h2osurf#25 355458.26 3906259.59 93.37 93.37 3as2.82 5347.34 0.009892084 0.092823163 93.47
h2osurf#26 355161.49 3906093.88 93.08 93.08 339.90 5687.24 0.007798426 0.100621589 93.18
h2osurf#27 354867.81 3905909.05 9291 92.91 347.00 6034.24 0.00812768 0.108749269 93.01
h2osurf#28 354732.87 3905544 .42 82.60 92.60 388.80 6423.04 0.010203559 0.118952828 9272
h2osurf#29 354704.62 3905490.09 92.47 92.47 81.24 648427 0.000253112 0.11820594 92,59
h2osurf#30 354643.57 3905473.63 92.45 92.45 6323 6547.50 0.000269867 0.119475808 92.57
h2osurf#31 354651.04 3005266.38 92.18 92.18 207.28 6754.89 0.002903065 0.122378872 92.31
h2osurf#32 354759.41 3904989.94 91.95 91.95 206.92 7051.81 0.005851011 0.128329884 92.08
h2osurf#33 354708.72 3904639.29 91.73 91.73 354.29 7406.10 0.008472931 0.136802814 91.87
h2osurf#34 354682 3004245 91.37 91.37 395.23 7801.43 0.010549238 0.147352053 61.52
h2osurf#35 354745 3903844 91.03 91.03 405.83 8207.27 0.011117354 0.158469407 91.19
h2osurf#26 354814 3803859 90.96 90.96 7061 8209.34 0.000336555 0.158805962 91.12
h2osurf1019-tbm 354766 3803710 80.90 90.90 156.22 8342.48 0.001647286 0.160453248 91.08
h2esurf1019#2 354868 3903472 920.77 20.77 259.38 8596.42 0.004541222 0.164994469 £0.93
h2esurf1016#3 354884 3503403 90.63 90.63 7083 8596.43 0.000338648 0.165333117 90.80
h2osurf1015#4 354884 3903403 80.62 90.63 0.00 8667.26 0.00 0.165333117 $0.80
h2esurfl019#5 354879 3903397 90.63 920.63 8.35 8675.79 4.70397E-06 0.165337821 $0.79
h2osurf101#6 354915 3503289 90.32 88.59 113.74 8785.35 0.00087317 0.16621099 90.49
h2osurf10194#7 355020 3802906 90.01 90.01 397.05 9189.04 0.0106841449 0.176852439 g0.19
h2esurfl019#8 355118 3902656 89.80 89.80 268.10 9454 80 0.004851866 0.181704305 89.08
h2osurf#45 355115.9 3902655.75 89.60 90.40 0.00 9454 60 0.00 0.181704205 29.98
h2osurf#46 355416.87 3901808.44 89.11 89.M 899.18 103563.77 0.054574909 0.236279215 89.35
h2osurf#47 355580.98 3900772.16 87.96 88.56 1049.19 1140297 0.074304119 0.310583334 88.27
h2osurf#48 355641.9 3900393.5 87.53 88.13 38353 11786.50 0.009929053 0.320512287 87.85
h2osurf#49 355145.66 3899649.2 88.36 86.98 804.56 12681.06 0.054015972 0.374528359 86.74
h2osurf#50 35448833 389913161 8535 8595 836.65 13517.711 0.047248794 0421777154 85.77
h2osurf#51 354026 3898443.87 8491 85.51 828.69 14346.40 0.046354635 0468131789 85.38
h2osurf#62 353420.76 3897907.62 84.27 84.87 801.92 15148.32 0.043407773 0.511539562 84.78
h2osurf#53 352833.69 3897540.96 83.70 84.30 699.81 15848.13 0.033056578 0.54459614 8425
h2osurf#54 352279.29 3897268.73 83.16 83.76 617.63 16465.76 0.025749126 0.570345266 83.73
h2osurf#55 352280 3897268.52 83.16 83.76 0.74 16466.50 3.70035E-08 0.570345303 83.73

by Tripod Data Systems Inc. Unit : Meter
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